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A classical theorem
Theorem (Raphaél Robinson, 1960s)

O(C\[1,00)NZ[x] = Z[x,1/(1 — x)]
O(C~ [p7t,00)) NZ[x] = Z[x,1/(1 — x),1/(1 — x — x*)]
#O(C\[1/4,00))NZ[x] =

O(V), where V = {Spf Z[x] glued to x € C~ [r,00)} is an
instance of Bost's formal-analytic arithmetic surface

1
X" 2T, (& — 1)

€ O(C ~ [1/(2 + 2cos(r/(2n))), 00)) N Z[]
C O(C~ (1/4,00)) N Z[x].

o0
1+\/1—4X Z anEZIIX]],

n=0

det (Cf+f)f'(,j=o =1.



A proof quintessence, rational version

Rational version: Pdlya observed the use of the Hankel
determinants det (a,-+j)7J:0: they are < czip[oo](lC)"zJ“O(”Z) if
Y2 oan/z" € C[1/z] is holomorphic on C \ K.
3 continuous Green’s function gx : C — R which is zero
on K, harmonic on C \ K, and asymptotically gi(z) =
log z/caploo](lC)’ + 0jz|00(1) near z = co.

Zudilin (A determinantal approach to irrationality) analyzed the
situation of denominators: if A"*1[1,..., bn]”a, € Z, then as soon
as

cap)(K) < (Aeb") _3/2,

we still have the identical vanishing det (af+1)7J:0 =0 for
all n > ng, which — a theorem of Kronecker — is tantamount
to f(x) € C(x).



A proof quintessence, integral version

Let us limit to the example of O(V) = Z[x,1/(1 — x)] for r > ¢~L.

Find a magical polynomial, in this case h(x) := x> — x € Z[x] \ Z,
with suppo .17 || < 1. The purpose is to prove
that h(x)™f(1/x) € Z[x] (a polynomial) for some m > myq.

We have for the first negative degree coefficient:

A/} = o b H(L2) Z

T 27 Jr
1
XA/} = 5 ]{ h(z)™*f(1/z) dz,
™ Jr
with a small integrand if the integration contour ' C C \ [r, 00) is
chosen to traverse the slit sufficiently nearly and far out.



Holonomic functions

Definition.

We denote by Hol{ah._.,ak}(Pl) the C-algebra of formal power
series f(x) € C[x] that continue analytically as holomorphic
functions along all paths in P < {ay, ..., ax}.

(“Extend as functions on the universal cover of P\ {ay,..., ax}")

Example. This is the case if f(x) satisfies a linear ODE L(f) =0
for some nonzero linear differential operator £ over P! without
singularities outside {aj, ..., ax}.



A recent theorem

Theorem (CDT § 2.7 and § 2.8)
As modules over the respective O(V):

(a)
oo Xn
= Spangj, 1/(1-x)] 110g(1 — x); 1; x9/q : prime powers q} .
(b)

Xn

Holsg 1 or(P) N z
{0.1,00}(P7) n@[1,...,n][1,...,n/2]

= SpaHZ[x,1/(1_x)]{ log(1 — x), log*(1 — x); 1;

xd1t+a2 /q1q2 : prime powers q, Q2}-



An unsolved problem

Problem
Compute the Z[x,1/(1 — x)]-module

Hol{o,1,00}(P EB

Is it finite over Q[x,1/(1 — x)]?

Theorem
It is finite over Q(x), with — unknown — dimension
in {5,6,7,8,9}, and containing at least the elements

L log(1=x), log*(1=x), Lio(x), \/m/o Iogt(\l/%)tdt




G-functions

Notation: 2 C C[x] to denote the ring of D-finite power series:
L(f) = 0 for some nonzero linear differential operator L with C[x]
coefficients

G-functions (may take {ay, ..., ax} the singularities of L).

o Xﬂ
f(x)e 2n Hol{al,.,.,ak}(Pl) n @ Ant+1[1 bn)® z
N e

Conjecturally — and certainly for the G-functions of geometric
origin — the denominator type will be always of this form for
some Ac N> b Q20 and 5 € N.

More precisely: if £(f) = 0 is a minimal order linear ODE of f,
then one can take o = rank(£) — 1 and b to be any real number
exceeding the LCM of the x = 0 local exponents of L.



An open problem

For which o € N does
1 o~ x"
2 NHolyg 1001 (PT) N EP G z
il LSRR

generate a finite Q(x)-module?

Example: the multiple polylogarithms ring in one variable
The Z[x,1/(1 — x)]-algebra MP C Q[x] generated by the functions

m

) X
Link() = Y o w

m>m>..>ng 11 M Ny

meets the triple intersection conditions with floating o, but gives
only finitely many Q(x)-linear independent elements below a
given o.



More elements

X 2k—171 _
Jy = /'og L—)dt 123
v1—xJo tv1l—t
€ Holfo.1,01(P ﬁ@ n]2k

Adjoin these, plus all their dx/x and dx/(1 — x) iterated integrals,
to the multiple polylogarithms ring.
Any other other (= Q(x)-linearly independent) functions in

-@mHOI{Oloo} ﬂ@



G-functions

David and Gregory Chudnovsky's fundamental theorem (1984)

An irreducible linear homogeneous ODE L(f) = 0 over Q(x) that
admits one nonzero G-series solution f(x) € Q[x] at x = 0 admits
in fact a full set of C-linearly independent G-series solutions

gl(X - Oé), s 7grank(£)(x - Oé) € 6[[)( - Oé]]

at every nonsingular point x = a € Q.

References: Dwork—Gerotto—Sullivan; Beukers's E-functions

and G-functions (Notes from the 2008 Arizona Winter School);
Gabriel Lepetit's Le Théoréme d’André—Chudnovsky—Katz (2021)
Using this, most of the fundamental questions — including the
Bombieri—-Dwork, Grothendieck—Katz, or the above denominators
structure conjecture (Fischler-Rivoal) — all reduce to the

case {a1,...,ax} = {0,1,00}:

u, (£,V) under an étale covering v : U — P* < {0,1,00}
{a1,...,ak} ~ {0,1, 00}



G-functions in shallow waters

Main object: the ring

Rabo = Holjo 1,603 (P7) N EB AL b,,]o

There is a universal holomorphic map A : D — C ~ {1} subject

to A~1(0) = {0}:

4
n?/4
( EE: q ) 00 1 2n 8 ]
n€1+2Z ( +4q ) g= e

= 16q H 1+ g2n—1

4
( Z qn2/4> n=1
ne2Z

Then A*R — O(D), but also Z[q] = Z[A/16].

AMq) =



G-functions in shallow waters

[e.e] n

Rabe = {f(x) c® An+1[1,x...,bn]o Z: f(\2)) € O(D)}

n=0

Some things could be proved:
> Ri00=Z[x,1/(1—x)]
» Rapo generates a finite-dimensional Q(x)-vector space if and
only if Aeb” < 16

» In particular, #R16’070 =#R (but what is ’R16’070 N 97)

> Ri6,0,0 N Q(x) are exactly the regular functions on
some Yo(N) U {ico} expressed as power series in x = A\/16
(CDT 2021, Unbounded Denominators Conjecture)

Locus of (A, b,0) for Rap. N2 to be finite-dimensional
over Q(x)?



An infinite-dimensional space

Proposition
The Q(x)-linear span of the G-functions of geometric origin
in R1,2.2 is infinite-dimensional.

Proof:
It contains the Hadamard product of the x ~~ 16x change

of R16,0,0 N Q(x) with the G-function of geometric origin

111 x X"
=3F = = -
The ODE singularities for Hadamard products multiply:

{0,1/16,00} x {0,16,00} = {0,1, 00}.



The O(V)-module structure
The following is a Z[x,1/(1 — x), x - (d/dx)]-module:

o0 Xn
= Spang[, 1/1-x)] {l0g(1 — x); 1; x9/q : prime powers q} .

This formula contains the irrationality statement log2 ¢ Q:
otherwise

log(1 — x) — log 2
1+ x

b

€ D~ Span(---) if log2=a/be Q.

Modified example: If we change the denominator type
to [1,...,101n/100], we still have

DN Z[[X]] = 0(]7) = Z[X¢ 1/(1 - X)]a

but D ®z Q is infinite over O(V)q = Q[x,1/(1 — x)] and finite
(free) module only over O(V)q[1/x] = Q[x,1/x, (1. — x)]



An example realizing L(2, x_3)= >, ((3ni1)2 - (3,,41r2)2

yi=x2/(x—1)=x-x/(x —1) = x + x/(x — 1), symmetrize

() = Sy (L)) i= (x— 2 ) (Liatx) - Li < f 1>>
< @ 2n]2

holonomic on Y(2) \ {elliptic point} = P!\ {0,4, 0} (with Z/2
local monodromy around the elliptic point y = 4)

» turned holomorphic on z € D under the substitution

y = h(z) = Mv2)?/(Mvz) — 1) = =256z + - --
> o(z) = — LD still has |/(0)] = 64 > &* and
(<P( )) € O(D), but now #¢~1(1) =1

> L(2,x-3) = gf(l)



The André—Beukers theorem on E-functions

An E-function is a power series >~ ; anx"/nl such that
Y g anx™ is a G-function.

From [Beukers, A refined version of the Siegel-Shidlovskii theorem
(2006)], using [André, Séries Gevrey de type arithmétique]:

Theorem (André, Beukers)

The ring of E-functions in Q[x] generates over Q[x,1/x] a free
submodule of Q((x)).

This statement contains and refines the full Siegel-Shidlovsky
theorem on the relations among special values of E-functions:

fx) - f(1)

1—x

F(x) ~ if £(1) € Q.



André’s take on the Siegel-Shidlovsky theorem on

E-functions
Fourier-Laplace transform: x +— —d%, d% — X,
F= Za,,);—? — f=> apx", X(%(F Hx%f, xF < (X2d% +x) f
» The Bezivin—Robba proof of Hermite—Lindemann—Weierstrass
The theorem easily reduces to prove that if F(x) is an
exponential polynomial over Q that vanishes at F(1) =0,
then G(x) := F(x)/(x — 1) is also an exponential polynomial.
Fourier dual to an ODE with an irregular singularity at x = 0:
If (x*4£ +x—1)g = f € Q(x) and g has a positive
convergence radius at x = 0, then g € Q(x).

» André's take: Chudnovsky’s fundamental G-functions theorem
to the order-2 linear differential system ~~ g € Q(x)
(Honda—Katz since x = 0 is an irregular singular point here)

(1) =" o) (1)



Yves André’'s Transcendance sans transcendance

The Fourier dual of “x = 0 is a regular (Fuchsian) singular point”
is just “absence of singularities outside {0, c0}”

5. Autour de Laplace. Preuve de 4.3 et 4.6

5.1. Pentes. Soit ¢ = Y 1 02— 0 Qi 7 dz’ € K|z, dz] son transformé de
Fourier-Laplace est

o= ZZ 1) a”d jz —ZZb,,z R
j=0 i=0 4=01i=0

Tous les opérateurs différentiels que nous considérons sont de type exponentiel
au sens de [M, XII], c’est-a-dire vérifient a,, # 0 (ce qui équivaut & b, ,, # 0).
En effet nous ne considérons que des opérateurs différentiels réguliers en 'infini,
ou facteurs de transformés de Fourier de tels.

Notons d’autre part que si ¢ est régulier en l'infini, on a alors a; = 0
pour % < u, donc b,; = 0 pour ¢ < p, ce qui signifie que 7¢ n’a de singularités
qu’en 0 et co. Ceci établit i).



An analogous quest for G-functions?

Applying a rational holonomy bound (a Q(x)-dimensional
estimate) to the integrals [ f(x) dx over f(x) € D, the
O(V)[1/h]-finiteness of the integral holonomic module D is

certainly true for some h € O(V) \ {0}.

Alas, this argument is completely ineffective, and does not allow
for irrationality proofs for specific special values.

Is it true that one can always take h = x in this statement?



The rational arithmetic holonomy bound

Theorem (CDT § 2.5 — after Bost—Charles)

For AeP” < 16, we have the following bound more precisely on the
finite Q(x)-linear span of R4 . Choose any holomorphic map

¢ : D — C~ {1} with »=1(0) = {0} and |¢(0)| > Ae®®. Then

) fsz log |¢(2) — o(wW)] ptHaar (Z) pHaar (W) .

di o Oz|x
IMQ(x (RAb ®zp Qx Iog|<p( )| — log A — bo

Example. For ¢ : D — C univalent, the double integral
= log |¢'(0)].

The concluding slides that follow give essentially a complete proof
— limiting for simplicity to the case p(z) = 4z/(1 + z)?> — of the
univalent case, in a slightly more precise form of the denominator
term from exploiting that at least the function “1” has better
denominators than the rest.



Proof of the characterization of the logarithm

We only need to prove that if bo < log4, then:

< log 4
m
~ log4 — bo + bo/m?

under the condition of a Q(x)-linearly independent m-tuple
fi(x),..., fm(x) € Q[x] of type [1,..., bn]? and holomorphic on
C\[1,0).
Indeed,
_ logd
log4 —8/9
then shows that there is no third function of type [1,... n] besides the
two known examples f; =1 and £, = log(1 — x).

=278705... <3

Example: The case m = 2 is exactly Zudilin's criterion.



Proof of the characterization of the logarithm

. log 4
WTS: m < log 4—bo+bao /m?

WLOG, f =1.

Let gn(x) :=47"-2Tp(2x —1) =47"-2cos(narccos(2x — 1)) =
x™ 4+ --- be the normalized Chebyshev polynomials. They are
monic and have suppg 1) [qn| =2-47".

Evaluation module. The free Z-module of rank mD:

D—n m
_ X
ED = @Ezolm . fl(X) fan) @Z[X]<D . G(X);
Sy =

D-1
Z[<p 2 Q(x) = Y Q) - an(x), [en(@)] < T -4
n=0
~ lattice point count with ~ TP 4(g)+°(D2) solutions

D
2

~ Ip(T) C Ep of #Ip(T) ~ TmD4m(5)+0(D?) | jobD?/2.



Proof of the characterization of the logarithm
. log 4
WTS: m < Iog4bengbcr/m2

Evaluation module.

Ep = Q[x], (Q1,...,Qm) = F(x):=>_ xPQi(1/x)fi(x),
i=1

1
=cx"+... ——Z ~ {0}.
x4 CE[l,...,bn]f’ ~ {0}
Vanishing filtration jumps. There are exactly mD possible values
u(l) <--- < u(mD) for n.
Interval of coefficient possibilities. If n = u(j) is one of those
vanishing order values for the difference V = F; — F of two
elements Fi, F; € Zp(T), then
1 dz (n+D)

c=— V(1/2)q,(z) — = T4~ "t° )
s oy V22



Proof of the characterization of the logarithm

Upper bound on #Zp(T). There results (Perelli and Zannier's
idea) the upper bound:

H#Ip(T) < H (1 +T-[,..., bu(j)]” - 440 +0(U(J)+D))

Asymptotics T — oo, D — oco. But recall

D
#HIp(T) ~ TmD4m(3)+e(D%) . gobD?/2 The comparison filters into
the requisite bound

mD
<n72D) (log4 — bo) < (log4 — bo) (Z U(j))
j=1
<log4-mD?/2 4+ cb-D?/2
log 4

< .
Tms log4 — bo + bo/m?



Thank you for your attention!



Unused slides



Application: A mixed periods example

Consider now with the bivalent map

__8(z+z3)_ B 1—z
#(2) = (1+2z2)% <1+z

)4, D Cu{1), ¢ }(0)={0}

(the next Landen iterative layer), which takes either connected
component of D ~ (—1,1) conformally isomorphically onto
C \ (-0, 1], but bijects

¢ H(—00,1] +— (—1,1).



Application: A mixed periods example

o(z) = 8((12122;): bivalent, but still simple enough to have its

Bost—Charles integral computed exactly.

Essentially following Smyth’s calculations of the bivariate Mahler measure
m(l+x+y —xy) =2G/m, where G = L(2, x_4) is the Catalan
constant:

Lemma

[ oglot2) = )]ttt () = o8+ %

o(z2) — p(w) _ 8(1 —zw)(1+ ix — iy — xy)(1 — ix + iy — xy)
Z—w (14 2)*(1 + w)? '




Application: A mixed periods example

This choices gives us completely similarly the "4 is a nonapparent
singularity” case of:

Theorem

Suppose f(x) € @7, W Z is holomorphic in

C < [1,00), and is analytically continuable as a holomorphic
function along all paths in P* ~. {0,4,1, 00}, for some

d € (—o0,—1).

Then,

f(x) = Qo(x) + Q1(x)log(1 — x) + Q2(x) Iog2(1 - Xx)

for some rational functions Qp, Q1, Q> € [x 1 1 } C Q(x).

’ x? 1—x

Observe that f (8((12;2;)> € O(D).



Application: A mixed periods example

Proof of the “non-P' ~ {0,1,00} case”:

1, log(1—x), log?(1—x), f(x), f( x)

x—1

011 1 1)\ 69
The rational holonomy bounds reads
log 8 + 4
5— %88t & 4640395. ..

m< —r
- |og8—69/50

a contradiction.



Application: A mixed periods example

Ha(x) := Vll_f‘rx € Z[x],

H = L dt € Q
B(x)—m/ 1—tm € Qlx.
log(1

He(x) = m/ tﬁ ) gt € QI],
. log(1 — t)
Hp(x) := m/ — mdteQ[[x]].

But the x = 1/4 local monodromy operator is lower-triangular with
period matrix ~» Q-linear independence proof for the first column

-1 000
—2L(1,x-3) 100

= 010
_2(L(17X—3)|0g3_L(2>X—3)) 0 01



Application: lrrationality proof for a Mahler measure

Corollary

. ((1 +x+y)4> _ 3L(2,x-2) — 5 log3

v F9



The classical Hermite—Padé approximants to log(1 — x)

zzk:<f>2(Hn_k—H)(1_yy+|og1_ i( >2 Ly

Jj=0

1 .,k K 2k+1
. 2k+1 t(t—1) dt — y 2k+2
- - + O y )

g /o (ty — 1)<+t 2k +1) (%) b=)

» Sety :=1/n and take the x* generating function:

2
holonomict on C ~ { (W) }

» Set y :=1/m and take the x* generating function:

2
holonomict on C ~ { (W) }

» Form the Hadamard product construction



Application: irrationality of log(1 — 1/n)log(1 — 1/m) for
|1 —m/n| <107°

oo 00
Z bk — akL11 1/n Z Vi — ukLll 1/m)) k
k=0 k=0

~ Y (bivi — akuiLiz (1/n)Liy (1/m)) (nmx)*
k=0

» the type would be [1,..., k]?
» the ODE singularities would be (say, m, n > 0):

0; nm (1 - M)Z (1 - mf (overconvergent!);
nm (1 + /1= 1/n)2 (1 - m>2 =14 0jn/mo1(1);
om (14 VI~ 1/n) (14 VI 1/m) =



Prévost's interpretation of Apéry’s overconvergent function

Is there any simultaneous Hermite—Padé interpretation of the function H(x) in analogy to:

[2k /2k] Hermite—Padé approximants to ¢(3,1+ 1/y) give:

(EECHEE) Samme
(Swsmr) EOCCD)p
= O(y*"*)

Setting y := 1/n, then the x" generating function recovers the Apéry
overconvergent function

G(x) = B(x) — ¢(3)A(x), type [1,...,n]?

This writes down an {0, (v/2 — 1)*}-overconvergent branch of a
holonomic function on C ~ {0, (\/é + 1)4} *(which lives more naturally on X1(6)")



Setting up an approach for the Q-linear independence of
1,¢(2), and L(2, x_3)

Conjecture

1 1
The Q [x 1 } -linear span of the five G-functions

X — X

1, Lii(x) = log(1 - x), Lil 1(x) = log?(1 = x),
Iog (1—1)
Lis(x),
2() \/1 —xJo tVi—

ought probably to be characterized arithmetically as:
3T c [-1,1] (finite) such that

F(x) € Q[x] N O (€ ~ [1,0))

has type[1,.. ., n]? and holomorphic analytic continuation
along all paths inCP*~ {0,1,00} U T



Centre de Recherches Mathématiques
CRM Proceedings and Lecture Notes
Volume 47, 2009

Integral Solutions of Apéry-like Recurrence Equations
Don Zagier

ABSTRACT. In [4], Beukers studies the differential equation

(*) ((# + at® + bt)F' (1)) + (t = N)F(t) = 0,

where a, b and A\ are rational parameters, and asks for which values of these
parameters this equation has a solution in Z[t], the motivating example being
the Apéry sequence with a = 11, b = —1, A\ = —3. We describe a search
over a suitably chosen domain of 100 million triples (a,b,A). In this domain
there are 36 triples yielding integral solutions of (*). These can be further
subdivided into members of four infinite classes, two of which are degenerate
special cases of the other two, and seven sporadic solutions. Of these solutions,
twelve, including all the sporadic ones, have parametrizations of Beukers type
in terms of modular forms and functions. These solutions are related to elliptic
curves over P! with four singular fibres.



Case | @ C c o L
2 1 2 1
A |38 -1 = = —((2) =0.4112335. ..
o 3 3 4C( ) 335
3V3 | 1 301
1| 22 o 2| 2L (2) = 0.3906512...
C |9 = 7y i 2L 3(2) 3906512
/2 1 "

1
5((2) = 03289868 ...

o
3
&
S
=&
- %

E |8 4 % %L,4(2)=0.4579827.4.
F |9 8 ¥ -2 3 gL_g(Q):O.4883140...

In each of the five cases of Table 5, formula (10) gives an interesting series of
rational approximations for one of the numbers ((2), L_3(2) or L_4(2), but, as
already mentioned, except in case D these do not converge quickly enough to yield
the irrationality of the limit. Indeed, from the table we see that in cases E and F
the quantity v, — Lu, blows up exponentially like 4 /n or 8" /n, respectively, and
even in cases A and C, where |a| = 1 and hence v,, — Lu,, tends to zero like O(1/n),
this is not enough to give the irrationality of L because v, itself has a denominator
which blows up like 2. The speed of convergence is best in these two cases, with
Un/tn, — L being of the order of (%)n and (é)n, respectively, while the convergence
in cases E (Catalan’s constant) and F is only like (%)n and (%)", respectively. The
approximations lead in each of the five cases to a simple infinite continued fraction



L(2,x-3) and ((2) as periods of Eisenstein series in
M (Fo(6), x—3)

Take these Eichler integrals of Eisenstein series:

=Y [ Sn st | .

n=1 \ d|n

We did f := > ap,q" ~ >
because of Bol's identity:

d k—1 dk_l d k—1
(qdq> (F!Hv) = (dil F) ‘kv =fliy="~f= (qdq) (F)

~ F|2_k7 = F + [period polynomial in 7 of degree < k — 2]

an_q" =: F starting from weight k = 3

nk



L(2,x-3)/2 is the wg-period of B

Choose v = wg, the involution exchanging the cusps T = ico and
7=0 of I'0(6)

(86~ im B(0)) | ,we = B(a) ~ 1 B(a)

q—1

This Apéry limit is:

lim B(q) = cI;T {ZX 3(n)n~

q—1

} = 12.x3)



((2)/4 is the wg-period of C

Choose v = wg, the involution exchanging the cusps T = ico and
7=0 of I'0(6)

q—1 q—1

(C( ) — lim C(q )) ‘ilwﬁ = C(q) — lim C(q)
This Apéry limit is:

1

lim C(q) = I|m{ ZX 3(n) (4Lia(q") — Lig(q2”))} =240

g—1 g—1



Simultaneous approximating forms to the two Eichler
periods L(2,x_3)/2 and ((2)/4

(B - ;L(QaX—3)> ‘_1W6 =B - %L(2>X—3)7
(C - ic(z)) | W= C— 1@

Kill the automorphy factor by multiplying by a modular form of the
opposite weight +1.

We follow Zagier's choice:

O_3(r):= > qm ™ € My(To(3), x-3)
m,neZ
9_3(7') + 0_3(27')

A=
2

€ Mi(To(6), x-3)



Simultaneous approximating forms to the two Eichler
periods L(2,x_3)/2 and ((2)/4

Now both A+ (B — 1L(2,x—3)) and A- (C — %((2)) are regular in
either of the cusps 7 = joo and 7 = 0 of Yy(6)
Apéry’s key: Z[q] = Z[x], turning modular forms into

G-functions:

o0
(1—g")*(1—q°)" 2 3
_ —qg—4¢° +10q°3 + ...
) qnljl (LB —gonyr 7 TR

Xo(6) ~ {i00,0,1/3,1/2} = Yo(6) = H/To(6) = P!~ {0,1/9,1, 00}

A=Y <Z <Z>2<2kk>> x" € Z[x]NHol (Pl N {o, % 1,oo}>



The Picard—Fuchs equation

Explicitly:

L(A)=0, L(AB)=1,  L(AC)=

where

d? d
L:=x(1—-x)(1- 9X)W + (1 —20x + 27x2)& + (9x — 3)

Beukers integral:

1
H=3L(2.x-3)A—AB

> 9nntn1_3n1_t3n
:an// e Sggzﬂ)det
—o [071]2 (1+5t+5 t ) n

Type [1,. .., n]? H(\(z/2)) € O(D), |¢'(0)| = 8 > €?



The Apéry limits method

The holonomic construction
AB — 3L(2,x-3)A and AC — 3((2)A are regular not only at the
singularity x = 0, but also at the next singularity x =1/9.

~ so0 are all their C-linear combinations
~ a Q-linear dependency of the periods

= H € Q[x] with the same overconvergence properties



