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A classical theorem

Theorem (Raphaël Robinson, 1960s)

O (Cr [1,∞)) ∩ ZJxK = Z[x , 1/(1− x)]

O
(
Cr [φ−1,∞)

)
∩ ZJxK = Z[x , 1/(1− x), 1/(1− x − x2)]

#O (Cr [1/4,∞)) ∩ ZJxK = #R.

O(Ṽ), where Ṽ = {Spf ZJxK glued to x ∈ Cr [r ,∞)} is an
instance of Bost’s formal-analytic arithmetic surface

1

xn · 2Tn

(
1

2x − 1
) ∈ O (Cr [1/(2 + 2 cos(π/(2n))),∞)) ∩ ZJxK

⊂ O (Cr (1/4,∞)) ∩ ZJxK.

1 +
√

1− 4x

2x
=
∞∑
n=0

Cnx
n ∈ ZJxK, det (Ci+j)

k
i ,j=0 ≡ 1.



A proof quintessence, rational version

Rational version: Pólya observed the use of the Hankel
determinants det (ai+j)

n
i ,j=0: they are ≤ cap[∞](K)n

2+o(n2) if∑∞
n=0 an/z

n ∈ CJ1/zK is holomorphic on ĈrK.

∃ continuous Green’s function gK : C→ R which is zero
on K, harmonic on C r K, and asymptotically gK(z) =

log
∣∣∣z/cap[∞](K)

∣∣∣+ o|z|→∞(1) near z =∞.

Zudilin (A determinantal approach to irrationality) analyzed the
situation of denominators: if An+1[1, . . . , bn]σan ∈ Z, then as soon
as

cap[∞](K) <
(
Aebσ

)−3/2
,

we still have the identical vanishing det (ai+j)
n
i ,j=0 ≡ 0 for

all n ≥ n0, which — a theorem of Kronecker — is tantamount
to f (x) ∈ C(x).



A proof quintessence, integral version

Let us limit to the example of O(Ṽ) = Z[x , 1/(1− x)] for r > φ−1.

Find a magical polynomial, in this case h(x) := x2 − x ∈ Z[x ] r Z,
with sup[0,r−1] |h| < 1. The purpose is to prove
that h(x)mf (1/x) ∈ Z[x ] (a polynomial) for some m ≥ m0.

We have for the first negative degree coefficient:

[x−2k ] {h(x)mf (1/x)} =
1

2πi

∮
Γ
h(z)m+k f (1/z)

dz

z
,

[x−2k−1] {h(x)mf (1/x)} =
1

2πi

∮
Γ
h(z)m+k f (1/z) dz ,

with a small integrand if the integration contour Γ ⊂ Cr [r ,∞) is
chosen to traverse the slit sufficiently nearly and far out.



Holonomic functions

Definition.
We denote by Hol{a1,...,ak}(P

1) the C-algebra of formal power
series f (x) ∈ CJxK that continue analytically as holomorphic
functions along all paths in P1 r {a1, . . . , ak}.

(“Extend as functions on the universal cover of P1 r {a1, . . . , ak}”)

Example. This is the case if f (x) satisfies a linear ODE L(f ) = 0
for some nonzero linear differential operator L over P1 without
singularities outside {a1, . . . , ak}.



A recent theorem

Theorem (CDT § 2.7 and § 2.8)

As modules over the respective O(Ṽ):

(a)

O (Cr [1,∞)) ∩
∞⊕
n=0

xn

[1, . . . , n]
Z

= SpanZ[x ,1/(1−x)] {log(1− x); 1; xq/q : prime powers q} .

(b)

Hol{0,1,∞}(P
1) ∩

∞⊕
n=0

xn

[1, . . . , n][1, . . . , n/2]
Z

= SpanZ[x ,1/(1−x)]

{
log(1− x), log2(1− x); 1;

xq1+q2
/
q1q2 : prime powers q1, q2

}
.



An unsolved problem

Problem
Compute the Z[x , 1/(1− x)]-module

Hol{0,1,∞}(P
1) ∩

∞⊕
n=0

xn

[1, . . . , n]2
Z

Is it finite over Q[x , 1/(1− x)]?

Theorem
It is finite over Q(x), with — unknown — dimension
in {5, 6, 7, 8, 9}, and containing at least the elements

1, log(1−x), log2(1−x), Li2(x),
1√

1− x

∫ x

0

log(1− t) dt

t
√

1− t



G -functions

Notation: D ⊂ CJxK to denote the ring of D-finite power series:
L(f ) = 0 for some nonzero linear differential operator L with C[x ]
coefficients

G -functions (may take {a1, . . . , ak} the singularities of L).

f (x) ∈ D ∩Hol{a1,...,ak}(P
1) ∩

∞⊕
n=0

xn

An+1[1, . . . , bn]σ
Z.

Conjecturally — and certainly for the G -functions of geometric
origin — the denominator type will be always of this form for
some A ∈ N>0, b ∈ Q≥0, and σ ∈ N.

More precisely: if L(f ) = 0 is a minimal order linear ODE of f ,
then one can take σ = rank(L)− 1 and b to be any real number
exceeding the LCM of the x = 0 local exponents of L.



An open problem

For which σ ∈ N does

D ∩Hol{0,1,∞}(P
1) ∩

∞⊕
n=0

xn

[1, . . . , n]σ
Z

generate a finite Q(x)-module?

Example: the multiple polylogarithms ring in one variable

The Z[x , 1/(1− x)]-algebra MP ⊂ QJxK generated by the functions

Lik1,...,kd (x) =
∑

n1>n2>...>nd

xn1

nk1
1 nk2

2 · · · n
kd
d

meets the triple intersection conditions with floating σ, but gives
only finitely many Q(x)-linear independent elements below a
given σ.



More elements

Jk :=
1√

1− x

∫ x

0

log2k−1(1− x) dt

t
√

1− t
, k = 1, 2, 3, . . .

∈ Hol{0,1,∞}(P
1) ∩

∞⊕
n=0

xn

[1, . . . , n]2k
Z

Adjoin these, plus all their dx/x and dx/(1− x) iterated integrals,
to the multiple polylogarithms ring.
Any other other (= Q(x)-linearly independent) functions in

D ∩Hol{0,1,∞}(P
1) ∩

∞⊕
n=0

xn

[1, . . . , n]•
Z?



G -functions

David and Gregory Chudnovsky’s fundamental theorem (1984)

An irreducible linear homogeneous ODE L(f ) = 0 over Q(x) that
admits one nonzero G -series solution f (x) ∈ QJxK at x = 0 admits
in fact a full set of C-linearly independent G -series solutions

g1(x − α), . . . , grank(L)(x − α) ∈ QJx − αK

at every nonsingular point x = α ∈ Q.

References: Dwork–Gerotto–Sullivan; Beukers’s E -functions
and G -functions (Notes from the 2008 Arizona Winter School);
Gabriel Lepetit’s Le Théorème d’André–Chudnovsky–Katz (2021)
Using this, most of the fundamental questions — including the
Bombieri–Dwork, Grothendieck–Katz, or the above denominators
structure conjecture (Fischler–Rivoal) — all reduce to the
case {a1, . . . , ak} = {0, 1,∞}:

u∗ (E ,∇) under an étale covering u : U → P1 r {0, 1,∞}
{a1, . . . , ak} {0, 1,∞}



G -functions in shallow waters

Main object: the ring

RA,b,σ := Hol{0,1,∞}(P
1) ∩

∞⊕
n=0

xn

An+1[1, . . . , bn]σ
Z

There is a universal holomorphic map λ : D→ Cr {1} subject
to λ−1(0) = {0}:

λ(q) :=

( ∑
n∈1+2Z

qn
2/4

)4

(∑
n∈2Z

qn
2/4

)4
= 16q

∞∏
n=1

(
1 + q2n

1 + q2n−1

)8

, q := eπiτ .

Then λ∗R ↪→ O(D), but also ZJqK = ZJλ/16K.



G -functions in shallow waters

RA,b,σ :=

{
f (x) ∈

∞⊕
n=0

xn

An+1[1, . . . , bn]σ
Z : f (λ(z)) ∈ O(D)

}

Some things could be proved:

I R1,0,0 = Z[x , 1/(1− x)]

I RA,b,σ generates a finite-dimensional Q(x)-vector space if and
only if Aebσ < 16

I In particular, #R16,0,0 = #R (but what is R16,0,0 ∩D?)

I R16,0,0 ∩Q(x) are exactly the regular functions on
some Y0(N) ∪ {i∞} expressed as power series in x = λ/16
(CDT 2021, Unbounded Denominators Conjecture)

Locus of (A, b, σ) for RA,b,σ ∩D to be finite-dimensional
over Q(x)?



An infinite-dimensional space

Proposition

The Q(x)-linear span of the G -functions of geometric origin
in R1,2,2 is infinite-dimensional.

Proof:
It contains the Hadamard product of the x  16x change
of R16,0,0 ∩Q(x) with the G -function of geometric origin

g(x) := 3F2

[
1 1 1

1/2 1/2
;
x

16

]
=
∞∑
n=0

xn(2n
n

)2
.

The ODE singularities for Hadamard products multiply:

{0, 1/16,∞}× {0, 16,∞} = {0, 1,∞}.



The O(Ṽ)-module structure
The following is a Z[x , 1/(1− x), x · (d/dx)]-module:

D := O (Cr [1,∞)) ∩
∞⊕
n=0

xn

[1, . . . , n]
Z

= SpanZ[x ,1/(1−x)] {log(1− x); 1; xq/q : prime powers q} .

This formula contains the irrationality statement log 2 /∈ Q:
otherwise

b
log(1− x)− log 2

1 + x
∈ D r Span(· · · ) if log 2 = a/b ∈ Q.

Modified example: If we change the denominator type
to [1, . . . , 101n/100], we still have

D ∩ ZJxK = O(Ṽ) = Z[x , 1/(1− x)],

but D ⊗Z Q is infinite over O(Ṽ)Q = Q[x , 1/(1− x)] and finite
(free) module only over O(Ṽ)Q[1/x ] = Q[x , 1/x , (1− x)]



An example realizing L(2, χ−3)=
∑∞

n=0

(
1

(3n+1)2 − 1
(3n+2)2

)
y := x2/(x − 1) = x · x/(x − 1) = x + x/(x − 1), symmetrize

f (y) := Sym−(Li2)(y) :=

(
x − x

x − 1

)(
Li2(x)− Li2

(
x

x − 1

))
∈
∞⊕
n=0

yn

[1, . . . , 2n]2
Z,

holonomic on Y0(2) r {elliptic point} = P1 r {0, 4,∞} (with Z/2
local monodromy around the elliptic point y = 4)

I turned holomorphic on z ∈ D under the substitution
y := h(z) = λ(

√
z)2/(λ(

√
z)− 1) = −256z + · · ·

I ϕ(z) := −64z(1+z)2

(1−z)4 still has |ϕ′(0)| = 64 > e4 and

f (ϕ(z)) ∈ O(D), but now #ϕ−1(1) = 1

I L(2, χ−3) = −2
9 f (1)



The André–Beukers theorem on E -functions

An E -function is a power series
∑∞

n=0 anx
n/n! such that∑∞

n=0 anx
n is a G -function.

From [Beukers, A refined version of the Siegel–Shidlovskii theorem
(2006)], using [André, Séries Gevrey de type arithmétique]:

Theorem (André, Beukers)

The ring of E -functions in QJxK generates over Q[x , 1/x ] a free
submodule of Q((x)).

This statement contains and refines the full Siegel–Shidlovsky
theorem on the relations among special values of E -functions:

f (x) 
f (x)− f (1)

1− x
if f (1) ∈ Q.



André’s take on the Siegel–Shidlovsky theorem on
E -functions

Fourier–Laplace transform: x 7→ − d
dx ,

d
dx 7→ x ,

F =
∑

an
xn

n! ↔ f =
∑

anx
n, x d

dx F ↔ x d
dx f , xF ↔

(
x2 d

dx + x
)
f

I The Bezivin–Robba proof of Hermite–Lindemann–Weierstrass
The theorem easily reduces to prove that if F (x) is an
exponential polynomial over Q that vanishes at F (1) = 0,
then G (x) := F (x)/(x − 1) is also an exponential polynomial.
Fourier dual to an ODE with an irregular singularity at x = 0:

If
(
x2 d

dx + x − 1
)
g = f ∈ Q(x) and g has a positive

convergence radius at x = 0, then g ∈ Q(x).

I André’s take: Chudnovsky’s fundamental G -functions theorem
to the order-2 linear differential system  g ∈ Q(x)
(Honda–Katz since x = 0 is an irregular singular point here)

x2 d

dx

(
g
1

)
=

(
1− x f

0 0

)(
g
1

)



Yves André’s Transcendance sans transcendance

x 7→ − d

dx
,

d

dx
7→ x

The Fourier dual of “x = 0 is a regular (Fuchsian) singular point”
is just “absence of singularities outside {0,∞}”



An analogous quest for G -functions?

Applying a rational holonomy bound (a Q(x)-dimensional
estimate) to the integrals

∫
f (x) dx over f (x) ∈ D, the

O(Ṽ)[1/h]-finiteness of the integral holonomic module D is
certainly true for some h ∈ O(Ṽ) r {0}.

Alas, this argument is completely ineffective, and does not allow
for irrationality proofs for specific special values.

Is it true that one can always take h = x in this statement?



The rational arithmetic holonomy bound

Theorem (CDT § 2.5 — after Bost–Charles)
For Aebσ < 16, we have the following bound more precisely on the
finite Q(x)-linear span of RA,b,σ. Choose any holomorphic map

ϕ : D→ Cr {1} with ϕ−1(0) = {0} and |ϕ′(0)| > Aebσ. Then

dimQ(x)

(
RA,b,σ ⊗Z[x] Q(x)

)
≤
∫∫

T2 log |ϕ(z)− ϕ(w)|µHaar(z)µHaar(w)

log |ϕ′(0)| − logA− bσ
.

Example. For ϕ : D ↪→ C univalent, the double integral
= log |ϕ′(0)|.

The concluding slides that follow give essentially a complete proof
— limiting for simplicity to the case ϕ(z) = 4z/(1 + z)2 — of the
univalent case, in a slightly more precise form of the denominator
term from exploiting that at least the function “1” has better
denominators than the rest.



Proof of the characterization of the logarithm

We only need to prove that if bσ < log 4, then:

m ≤ log 4

log 4− bσ + bσ/m2

under the condition of a Q(x)-linearly independent m-tuple
f1(x), . . . , fm(x) ∈ QJxK of type [1, . . . , bn]σ and holomorphic on
Cr [1,∞).

Indeed,
log 4

log 4− 8/9
= 2.78705 . . . < 3

then shows that there is no third function of type [1, . . . n] besides the
two known examples f1 = 1 and f2 = log(1− x).

Example: The case m = 2 is exactly Zudilin’s criterion.



Proof of the characterization of the logarithm

WTS: m ≤ log 4
log 4−bσ+bσ/m2

WLOG, f1 ≡ 1.

Let qn(x) := 4−n · 2Tn(2x − 1) = 4−n · 2 cos (n arccos(2x − 1)) =
xn + · · · be the normalized Chebyshev polynomials. They are
monic and have sup[0,1] |qn| = 2 · 4−n.

Evaluation module. The free Z-module of rank mD:

ED := ⊕D−1
n=0

xD−n

[1, . . . , bn]σ
· f1(x)⊕

m⊕
j=2

Z[x ]<D · fj(x);

Z[x ]<D 3 Q(x) =
D−1∑
n=0

cn(Q) · qn(x), |cn(Q)| < T · 4n

 lattice point count with ∼ TD4(D2)+o(D2) solutions

 ID(T ) ⊂ ED of #ID(T ) ∼ TmD4m(D2)+o(D2) · eσbD2/2.



Proof of the characterization of the logarithm
WTS: m ≤ log 4

log 4−bσ+bσ/m2

Evaluation module.

ED ↪→ QJxK, (Q1, . . . ,Qm) 7→ F (x) :=
m∑
i=1

xDQi (1/x)fi (x),

= cxn + . . . , c ∈ 1

[1, . . . , bn]σ
Zr {0}.

Vanishing filtration jumps. There are exactly mD possible values
u(1) < · · · < u(mD) for n.

Interval of coefficient possibilities. If n = u(j) is one of those
vanishing order values for the difference V = F1 − F2 of two
elements F1,F2 ∈ ID(T ), then

c =
1

2πi

∮
Γ⊃[0,1]

V (1/z)qn(z)
dz

z
= T4−n+o(n+D).



Proof of the characterization of the logarithm
Upper bound on #ID(T ). There results (Perelli and Zannier’s
idea) the upper bound:

#ID(T ) ≤
mD∏
j=1

(
1 + T · [1, . . . , bu(j)]σ · 4−u(j)+o(u(j)+D)

)
.

Asymptotics T →∞,D →∞. But recall

#ID(T ) ∼ TmD4m(D2)+o(D2) · eσbD2/2. The comparison filters into
the requisite bound

(
mD

2

)
(log 4− bσ) ≤ (log 4− bσ)

mD∑
j=1

u(j)


≤ log 4 ·mD2/2 + σb · D2/2

 m ≤ log 4

log 4− bσ + bσ/m2
.



Thank you for your attention!



Unused slides



Application: A mixed periods example

Consider now with the bivalent map

ϕ(z) :=
8(z + z3)

(1 + z)4
= 1−

(
1− z

1 + z

)4

, D→ Cr{1}, ϕ−1(0) = {0}

(the next Landen iterative layer), which takes either connected
component of Dr (−1, 1) conformally isomorphically onto
Cr (−∞, 1], but bijects

ϕ−1(−∞, 1]←→ (−1, 1).



Application: A mixed periods example

ϕ(z) := 8(z+z3)
(1+z)4 : bivalent, but still simple enough to have its

Bost–Charles integral computed exactly.

Essentially following Smyth’s calculations of the bivariate Mahler measure

m(1 + x + y − xy) = 2G/π, where G = L(2, χ−4) is the Catalan

constant:

Lemma∫∫
T2

log |ϕ(z)− ϕ(w)|µHaar(z)µHaar(w) = log 8 +
4G

π

ϕ(z)− ϕ(w)

z − w
= 8

(1− zw)(1 + ix − iy − xy)(1− ix + iy − xy)

(1 + z)4(1 + w)4
.



Application: A mixed periods example

This choices gives us completely similarly the “δ is a nonapparent
singularity” case of:

Theorem
Suppose f (x) ∈

⊕∞
n=0

xn

[1,...,n][1,...,n/2] Z is holomorphic in

Cr [1,∞), and is analytically continuable as a holomorphic
function along all paths in P1 r {0, δ, 1,∞}, for some
δ ∈ (−∞,−1).
Then,

f (x) = Q0(x) + Q1(x) log(1− x) + Q2(x) log2(1− x)

for some rational functions Q0,Q1,Q2 ∈
[
x , 1

x ,
1

1−x

]
⊂ Q(x).

Observe that f
(

8(z+z3)
(1+z)4

)
∈ O(D).



Application: A mixed periods example

Proof of the “non-P1 r {0, 1,∞} case”:

1, log(1− x), log2(1− x), f (x), f

(
x

x − 1

)
 b :=

(
0 1 1 1 1
0 0 1

2
1
2

1
2

)t

, τ(b) =
69

50
= 1.38.

The rational holonomy bounds reads

5 = m ≤
log 8 + 4G

π

log 8− 69/50
= 4.640395 . . . ,

a contradiction.



Application: A mixed periods example

HA(x) :=
1√

1− 4x
∈ ZJxK,

HB(x) :=
1√

1− 4x

∫ x

0

1

1− t

1√
1− 4t

dt ∈ QJxK,

HC (x) :=
1√

1− 4x

∫ x

0

log(1− t)

t
√

1− 4t
dt ∈ QJxK,

HD(x) :=
1√

1− 4x

∫ x

0

log(1− t)

1− t

1√
1− 4t

dt ∈ QJxK.

But the x = 1/4 local monodromy operator is lower-triangular with
period matrix  Q-linear independence proof for the first column

−1 0 0 0
−2L(1, χ−3) 1 0 0

π2

9 0 1 0
−2 (L(1, χ−3) log 3− L(2, χ−3)) 0 0 1





Application: Irrationality proof for a Mahler measure

Corollary

m

(
(1 + x + y)4

3

)
=

3L(2, χ−2)− π√
3

log 3

π
/√

3
/∈ Q.



The classical Hermite–Padé approximants to log(1− x)

2
k∑

j=0

(
k

j

)2

(Hn−k − Hj) (1− y)j + log(1− y)
k∑

j=0

(
k

j

)2

(1− y)j

= y2k+1

∫ 1

0

tk(t − 1)k

(ty − 1)k+1
dt = − y2k+1

(2k + 1)
(2k
k

) + O(y2k+2),

I Set y := 1/n and take the xk generating function:

holonomic+ on Cr

{(
1±
√

1−1/n

1/n

)2
}

I Set y := 1/m and take the xk generating function:

holonomic+ on Cr

{(
1±
√

1−1/m

1/m

)2
}

I Form the Hadamard product construction



Application: irrationality of log(1− 1/n) log(1− 1/m) for
|1−m/n| < 10−6

∞∑
k=0

(bk − akLi1(1/n)) xk ,
∞∑
k=0

(vk − ukLi1(1/m)) xk

 
∞∑
k=0

(bkvk − akukLi1(1/n)Li1(1/m)) (nmx)k

I the type would be [1, . . . , k]2

I the ODE singularities would be (say, m, n > 0):

0; nm
(

1−
√

1− 1/n
)2 (

1−
√

1− 1/m
)2

(overconvergent!);

nm
(

1±
√

1− 1/n
)2 (

1∓
√

1− 1/m
)2

= 1 + o|n/m|→1(1);

nm
(

1 +
√

1− 1/n
)2 (

1 +
√

1− 1/m
)2

→∞



Prévost’s interpretation of Apéry’s overconvergent function

Is there any simultaneous Hermite–Padé interpretation of the function H(x) in analogy to:

[2k/2k] Hermite–Padé approximants to ζ(3, 1 + 1/y) give:

{( ∞∑
k=0

(
n

k

)(
n + k

k

)(
1/y

k

)(
k + 1/y

k

)) k∑
m=1

(−1)m−1

2m3
(

1/y
m

)(
m+1/y

m

)
−

( ∞∑
k=1

1

(k + 1/y)3

)( ∞∑
k=0

(
n

k

)(
n + k

k

)(
1/y

k

)(
k + 1/y

k

))}
y2n

= O(y4n+1)

Setting y := 1/n, then the xn generating function recovers the Apéry
overconvergent function

G (x) = B(x)− ζ(3)A(x), type [1, . . . , n]3

This writes down an
{

0, (
√

2− 1)4
}

-overconvergent branch of a

holonomic function on Cr {0, (
√

2± 1)4}. *(which lives more naturally on X1(6)+)



Setting up an approach for the Q-linear independence of
1, ζ(2), and L(2, χ−3)

Conjecture

The Q

[
x ,

1

x
,

1

1− x

]
-linear span of the five G -functions

1, Li1(x) = log(1− x), Li1,1(x) = log2(1− x),

Li2(x),
1√

1− x

∫ x

0

log(1− t)

t
√

1− t
dt

ought probably to be characterized arithmetically as:

∃T ⊂
[
−1

2 ,
1
2

]
(finite) such that

f (x) ∈ QJxK ∩ O (Cr [1,∞))

has type [1, . . . , n]2 and holomorphic analytic continuation
along all paths in CP1 r {0, 1,∞} ∪ T







L(2, χ−3) and ζ(2) as periods of Eisenstein series in
M3 (Γ0(6), χ−3)

Take these Eichler integrals of Eisenstein series:

B :=
∞∑
n=1

∑
d |n

(−1)d−1χ−3(n/d)d2

 qn

n2
,

C :=
∞∑
n=1

∑
d |n

χ−3(d)d2

 qn

n2
−
∞∑
n=1

∑
d |n

χ−3(d)d2

 q2n

(2n)2

We did f :=
∑

anq
n  

∑ an
nk−1 q

n =: F starting from weight k = 3
because of Bol’s identity:(
q
d

dq

)k−1 (
F
∣∣
2−kγ

)
=

(
dk−1

dτ k−1
F

) ∣∣∣
k
γ = f |kγ = f =

(
q
d

dq

)k−1

(F )

 F
∣∣
2−kγ = F + [period polynomial in τ of degree ≤ k − 2]



L(2, χ−3)/2 is the w6-period of B

Choose γ = w6, the involution exchanging the cusps τ = i∞ and
τ = 0 of Γ0(6):(

B(q)− lim
q→1

B(q)

) ∣∣∣
−1

w6 = B(q)− lim
q→1

B(q)

This Apéry limit is:

lim
q→1

B(q) = lim
q→1

{ ∞∑
n=1

χ−3(n)n−2 qn

1 + qn

}
=

1

2
L(2, χ−3)



ζ(2)/4 is the w6-period of C

Choose γ = w6, the involution exchanging the cusps τ = i∞ and
τ = 0 of Γ0(6):(

C (q)− lim
q→1

C (q)

) ∣∣∣
−1

w6 = C (q)− lim
q→1

C (q)

This Apéry limit is:

lim
q→1

C (q) = lim
q→1

{
1

4

∞∑
n=1

χ−3(n)
(
4Li2(qn)− Li2(q2n)

)}
=

1

4
ζ(2)



Simultaneous approximating forms to the two Eichler
periods L(2, χ−3)/2 and ζ(2)/4

(
B − 1

2
L(2, χ−3)

) ∣∣∣
−1

w6 = B − 1

2
L(2, χ−3),(

C − 1

4
ζ(2)

) ∣∣∣
−1

w6 = C − 1

4
ζ(2)

Kill the automorphy factor by multiplying by a modular form of the
opposite weight +1.

We follow Zagier’s choice:

θ−3(τ) :=
∑

m,n∈Z
qm

2+mn+n2 ∈ M1(Γ0(3), χ−3)

A :=
θ−3(τ) + θ−3(2τ)

2
∈ M1(Γ0(6), χ−3)



Simultaneous approximating forms to the two Eichler
periods L(2, χ−3)/2 and ζ(2)/4

Now both A ·
(
B − 1

2L(2, χ−3)
)

and A ·
(
C − 1

4ζ(2)
)

are regular in
either of the cusps τ = i∞ and τ = 0 of Y0(6)
Apéry’s key: ZJqK = ZJxK, turning modular forms into
G -functions:

x = q
∞∏
n=1

(1− qn)4(1− q6n)8

(1− q2n)8(1− q3n)4
= q − 4q2 + 10q3 + . . .

X0(6) r {i∞, 0, 1/3, 1/2} = Y0(6) = H/Γ0(6)
∼=→ P1 r {0, 1/9, 1,∞}

A =
∞∑
n=0

(
n∑

k=0

(
n

k

)2(2k

k

))
xn ∈ ZJxK∩Hol

(
P1 r

{
0,

1

9
, 1,∞

})



The Picard–Fuchs equation

Explicitly:

L(A) = 0, L(AB) = 1, L(AC ) =
1

1− x
,

where

L := x(1− x)(1− 9x)
d2

dx2
+ (1− 20x + 27x2)

d

dx
+ (9x − 3)

Beukers integral:

H =
1

2
L(2, χ−3)A− AB

=
∞∑
n=0

xn
∫∫

[0,1]2

9nsntn(1− s3)n(1− t3)n

(1 + st + s2t2)2n+1
ds dt

Type [1, . . . , n]2 H(λ(z/2)) ∈ O(D), |ϕ′(0)| = 8 > e2



The Apéry limits method

The holonomic construction
AB − 1

2L(2, χ−3)A and AC − 1
4ζ(2)A are regular not only at the

singularity x = 0, but also at the next singularity x = 1/9.

 so are all their C-linear combinations

 a Q-linear dependency of the periods

⇒ H ∈ QJxK with the same overconvergence properties


